Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues
نویسندگان
چکیده
منابع مشابه
Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.
Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity an...
متن کاملSpecificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants.
The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix-helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the gly...
متن کاملIon-mediated nucleic acid helix-helix interactions.
Salt ions are essential for the folding of nucleic acids. We use the tightly bound ion (TBI) model, which can account for the correlations and fluctuations for the ions bound to the nucleic acids, to investigate the electrostatic free-energy landscape for two parallel nucleic acid helices in the solution of added salt. The theory is based on realistic atomic structures of the helices. In monova...
متن کاملAromatic–aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process
The Ca(2+)-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca(2+) concentrations (Pomax) is low, typically 0.1-0.2 for KCa3.1 wild type. This observation argues for the binding of Ca(2+) to the calmodulin (CaM)-KCa3.1 complex, promoting the form...
متن کاملMapping the energy surface of transmembrane helix-helix interactions.
Transmembrane helices are no longer believed to be just hydrophobic segments that exist solely to anchor proteins to a lipid bilayer, but rather they appear to have the capacity to specify function and structure. Specific interactions take place between hydrophobic segments within the lipid bilayer whereby subtle mutations that normally would be considered innocuous can result in dramatic struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2007
ISSN: 0021-9258
DOI: 10.1074/jbc.m610368200